Mo $K\alpha$ radiation

 $> 2\sigma(I)$

 $\mu = 0.07 \text{ mm}^{-3}$

T = 100 (2) K $0.63 \times 0.19 \times 0.14 \text{ mm}$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(μ -dimesitylborinato- $\kappa^2 O:O$)bis[(2methylpyridine-*k*N)lithium]

K. T. Pillai Saravana, Jung-Ho Son and James D. Hoefelmever*

Department of Chemistry, The University of South Dakota, 414 E. Clark St, Vermillion, SD 57069, USA Correspondence e-mail: jhoefelm@usd.edu

Received 28 October 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.140; data-to-parameter ratio = 11.0.

The title compound, $[Li_2(C_{18}H_{22}BO)_2(C_6H_7N)_2]$, is a lithium dimesitylboroxide dimer in which the lithium cation is also coordinated by one molecule of 2-methylpyridine. At the core of the structure is an Li₂O₂ four-membered ring. The structure is centrosymmetric with an inversion centre midway between two Li atoms. Intermolecular C-H··· π interactions and π - π interactions between the 2-methylpyridine rings exist [centroid–centroid distance = 3.6312 (16) Å].

Related literature

For related structures, see: Weese et al. (1987); Gibson et al. (1997); Cole et al. (2004).

Experimental

Crystal data [Li₂(C₁₈H₂₂BO)₂(C₆H₇N)₂]

 $M_r = 730.46$

Monoclinic, $P2_1/n$	
a = 8.6075 (11) Å	
b = 9.1307 (11) Å	
c = 26.220 (3) Å	
$\beta = 90.124 \ (2)^{\circ}$	
V = 2060.7 (4) Å ³	

Data collection

Bruker APEXII diffractometer	2848 independent reflections
Absorption correction: multi-scan	2011 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2006)	$R_{\rm int} = 0.036$
$T_{\min} = 0.958, T_{\max} = 0.990$	$\theta_{\rm max} = 23.4^{\circ}$
8145 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	260 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.26	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
2848 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$C_5 = H_5 = C_2 1^{i} = 0.05 = 2.06 = 2.787 (2) = 146$	$\cdot H \cdot \cdot \cdot A$)	D-	D-H	-H	Η	ł	H	ł٠٠٠	·A		$D \cdots $	4	D-	$H \cdot \cdot \cdot A$
$C_{3}-H_{5}\cdots C_{g1}$ 0.55 2.50 3.787 (5) 140		.95	0.9:).95	5	i		2	.96	-		3.787	(3)	146	

Symmetry code: (i) x, y - 1, z. Cg1 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

This work was supported by funding from the South Dakota 2010 Initiative, Center for Research and Development of Light-Activated Materials. Purchase of the X-ray diffractometer was made possible with funds from the National Science Foundation (EPS-0554609).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2055).

References

- Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2004). Organometallics, 23, 5159-5168
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1997). Polyhedron, 16, 2637-2641.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Weese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. P. (1987). Inorg. Chem. 26, 2409-2413.

Acta Cryst. (2009). E65, m179 [doi:10.1107/S1600536808042748]

Bis(μ -dimesitylborinato- $\kappa^2 O:O$)bis[(2-methylpyridine- κN)lithium]

K. P. Saravana, J.-H. Son and J. D. Hoefelmeyer

Comment

The title compound is structurally similar to the compounds reported in the literature (Weese *et al.*, 1987; Gibson *et al.*, 1997; Cole *et al.*, 2004). The molecule contains a staggered conformation of C—B—C planes about the Li₂O₂ core, and pyramidalization about the three coordinate lithium(I).

The title compound consist of a lithium(I) cation coordinated to two dimesitylboroxide anions (Li1—O1 = 1.853 (5) Å and Li1—O1ⁱ = 1.873 (5) Å) [symmetry code: (i) -*x* + 1, -*y* + 2, -*z*] and one molecule of 2-methylpyridine (Li1—N1 = 2.084 (5) Å). The environment around boron is distorted trigonal planar (sum of the angles around B1 = 360.0°). The asymmetric units are joined *via* planar Li₂O₂ four member ring (Li1…Li1ⁱ = 2.444 (8) Å). The lithium cation is three-coordinate and slightly pyramidalized (sum of the angles around Li1 = 356.03°). The O1—Li1—O1ⁱ and O1ⁱ—Li1—N1 angles deviate from an ideal trigonal planar geometry (98.0 (2) ° and 138.6 (3) °, respectively), with the expanded angle a result of steric repulsion between the methyl group (C7) of 2-methylpyridine and dimesitylboroxide group of the adjoining asymmetric unit. The mean plane of boron triangle forms a 48.96 (16) ° angle against the Li₂O₂ plane. The crystal structure contains intermolecular C5—H5…*C*g1ⁱⁱ interaction with H…*C*g = 2.96 Å, C—H…*C*g angle 146° and C…Cg = 3.787 (3) Å (*C*g1 is centroid of C8—C13) [symmetry code: (ii) *x*, -1 + *y*, *z*]. Intermolecular face to face π – π interaction between the 2-methylpyridine rings occurs with *C*g2…*C*g2ⁱⁱⁱ = 3.6312 (`6) Å (*C*g2 is centroid of N1—C6) [symmetry code: (iii) -*x* + 1, -*y* + 1, -*z*].

Experimental

To a solution of 2-methylpyridine (0.45 ml, 3.8 mmol), n-butyllithium (1.6 M, 2.5 ml, 4.2 mmol) in 10 ml hexane was added dropwise through an addition funnel at -78 °C under inert atmosphere. The resulting red color solution was stirred for 30 minutes at -78 °C. Meanwhile, dimesitylboronfluoride (1.0 g, 3.8 mmol) was dissolved in hexane (10 ml) in a round bottom flask and kept under nitrogen atmosphere. The dimesitylboronfluoride solution was transferred to the organolithium by cannula. The resultant yellow color solution was stirred (18 h) under nitrogen atmosphere. The product was filtered through a frit and a yellowish precipitate formed upon exposure to air. The product was dissolved in toluene, and crystals were recovered upon slow evaporation of the solvent.

Refinement

C-bound H atoms were positioned geometrically with C—H (aromatic) = 0.95 Å and C—H (methyl) = 0.98 Å and allowed to ride on the parent atoms with $U_{iso}(H) = 1.2Ueq(C)$ and $U_{iso}(H) = 1.5Ueq(C)$, respectively.

Figures

Fig. 1. *ORTEP* drawing of Bis- μ_2 -[(2-methylpyridine)lithium(I)]-bis(dimesitylboroxide). Unlabled atoms are related with labeled part by inversion symmetry. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2. Packing diagram of Bis- μ_2 -[(2-methylpyridine)lithium(I)]-bis(dimesitylboroxide) viewed along *a* axis. Dotted lines show C— H··· π and π - π interactions.

Bis(μ -dimesitylborinato- κ^2 O:O)bis[(2-methylpyridine- κ N)lithium]

 $F_{000} = 784$

 $D_{\rm x} = 1.177 \ {\rm Mg \ m^{-3}}$

Cell parameters from 1946 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 23.1^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 100 (2) K

Needle, colorless

 $0.63 \times 0.19 \times 0.14 \text{ mm}$

Crystal data $[Li_2(C_{18}H_{22}BO)_2(C_6H_7N)_2]$ $M_r = 730.46$ Monoclinic, $P2_1/n$

Hall symbol: -P 2yn a = 8.6075 (11) Å b = 9.1307 (11) Åc = 26.220 (3) Å

 $\beta = 90.124 (2)^{\circ}$ $V = 2060.7 (4) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEXII diffractometer	2848 independent reflections
Radiation source: fine-focus sealed tube	2011 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 100(2) K	$\theta_{\text{max}} = 23.4^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2006)	$h = -9 \rightarrow 9$
$T_{\min} = 0.958, T_{\max} = 0.990$	$k = -10 \rightarrow 9$
8145 measured reflections	$l = -28 \rightarrow 29$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.26	$(\Delta/\sigma)_{\rm max} = 0.001$
2848 reflections	$\Delta \rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^{-3}$
260 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.7338 (3)	0.5897 (3)	-0.00706 (10)	0.0223 (6)
C3	0.7904 (3)	0.4572 (3)	0.01163 (10)	0.0263 (7)
Н3	0.8696	0.4059	-0.0062	0.032*
C4	0.7299 (3)	0.4011 (3)	0.05639 (10)	0.0282 (7)
H4	0.7681	0.3114	0.0699	0.034*
C5	0.6140 (3)	0.4763 (3)	0.08128 (10)	0.0281 (7)
Н5	0.5699	0.4395	0.1119	0.034*
C6	0.5637 (3)	0.6068 (3)	0.06045 (10)	0.0253 (7)
Н6	0.4831	0.6584	0.0774	0.030*
C7	0.7948 (3)	0.6533 (3)	-0.05569 (10)	0.0297 (7)
H7A	0.8423	0.5755	-0.0762	0.045*
H7B	0.8730	0.7281	-0.0478	0.045*
H7C	0.7092	0.6979	-0.0749	0.045*
C8	0.4570 (3)	1.0810 (3)	0.13862 (9)	0.0197 (6)
С9	0.3566 (3)	1.1589 (3)	0.17090 (9)	0.0208 (6)
C10	0.4168 (3)	1.2560 (3)	0.20712 (9)	0.0236 (6)
H10	0.3469	1.3111	0.2275	0.028*
C11	0.5757 (3)	1.2744 (3)	0.21418 (10)	0.0218 (6)
C12	0.6750 (3)	1.1964 (3)	0.18272 (10)	0.0232 (7)
H12	0.7841	1.2070	0.1869	0.028*
C13	0.6178 (3)	1.1022 (3)	0.14482 (10)	0.0222 (6)
C14	0.1828 (3)	1.1379 (3)	0.16953 (10)	0.0276 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14A	0.1558	1.0466	0.1870	0.041*
H14B	0.1475	1.1331	0.1340	0.041*
H14C	0.1322	1.2204	0.1867	0.041*
C15	0.6359 (3)	1.3743 (3)	0.25549 (10)	0.0304 (7)
H15A	0.7469	1.3562	0.2608	0.046*
H15B	0.5796	1.3552	0.2872	0.046*
H15C	0.6202	1.4765	0.2453	0.046*
C16	0.7350 (3)	1.0196 (3)	0.11262 (10)	0.0272 (7)
H16A	0.7170	0.9141	0.1160	0.041*
H16B	0.8403	1.0431	0.1243	0.041*
H16C	0.7233	1.0483	0.0768	0.041*
C17	0.2773 (3)	0.8374 (3)	0.11617 (9)	0.0214 (6)
C18	0.3143 (3)	0.7485 (3)	0.15886 (9)	0.0227 (6)
C19	0.2096 (3)	0.6436 (3)	0.17580 (10)	0.0230 (7)
H19	0.2383	0.5830	0.2037	0.028*
C20	0.0641 (3)	0.6238 (3)	0.15342 (10)	0.0235 (7)
C21	0.0300 (3)	0.7095 (3)	0.11096 (10)	0.0228 (6)
H21	-0.0675	0.6971	0.0945	0.027*
C22	0.1331 (3)	0.8122 (3)	0.09178 (9)	0.0212 (6)
C23	0.4655 (3)	0.7641 (3)	0.18735 (10)	0.0312 (7)
H23A	0.4646	0.8554	0.2070	0.047*
H23B	0.5517	0.7662	0.1630	0.047*
H23C	0.4787	0.6809	0.2106	0.047*
C24	-0.0507 (3)	0.5159 (3)	0.17434 (11)	0.0358 (8)
H24A	-0.0458	0.4250	0.1545	0.054*
H24B	-0.1556	0.5571	0.1721	0.054*
H24C	-0.0256	0.4951	0.2101	0.054*
C25	0.0840 (3)	0.8989 (3)	0.04561 (10)	0.0276 (7)
H25A	-0.0198	0.8675	0.0348	0.041*
H25B	0.1581	0.8824	0.0179	0.041*
H25C	0.0817	1.0034	0.0542	0.041*
Li1	0.5311 (5)	0.8695 (5)	-0.00153 (16)	0.0253 (10)
B1	0.3913 (3)	0.9657 (3)	0.09683 (11)	0.0203 (7)
N1	0.6228 (3)	0.6653 (2)	0.01732 (8)	0.0236 (6)
01	0.43136 (19)	0.97903 (18)	0.04806 (6)	0.0246 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0251 (16)	0.0196 (15)	0.0222 (15)	0.0003 (12)	0.0001 (13)	-0.0035 (12)
C3	0.0253 (16)	0.0231 (15)	0.0306 (16)	0.0050 (13)	0.0003 (13)	-0.0029 (13)
C4	0.0328 (17)	0.0207 (15)	0.0312 (17)	0.0029 (13)	-0.0033 (14)	0.0031 (13)
C5	0.0326 (17)	0.0260 (16)	0.0258 (16)	-0.0022 (13)	-0.0004 (14)	0.0043 (13)
C6	0.0231 (16)	0.0281 (16)	0.0246 (16)	0.0015 (13)	0.0027 (13)	-0.0027 (13)
C7	0.0296 (16)	0.0274 (16)	0.0320 (17)	0.0042 (13)	0.0060 (13)	0.0009 (13)
C8	0.0238 (15)	0.0167 (13)	0.0186 (14)	0.0002 (12)	0.0031 (12)	0.0072 (11)
C9	0.0209 (15)	0.0236 (15)	0.0181 (14)	0.0007 (12)	0.0018 (12)	0.0030 (12)
C10	0.0266 (16)	0.0229 (14)	0.0214 (15)	0.0038 (13)	0.0047 (12)	0.0024 (12)

C11	0.0233 (16)	0.0215 (15)	0.0205 (14)	-0.0017 (12)	0.0001 (13)	0.0046 (12)
C12	0.0225 (15)	0.0219 (14)	0.0253 (15)	-0.0031 (12)	0.0009 (13)	0.0088 (12)
C13	0.0244 (16)	0.0186 (14)	0.0235 (15)	0.0014 (12)	0.0053 (12)	0.0068 (12)
C14	0.0252 (16)	0.0308 (16)	0.0267 (16)	0.0022 (13)	0.0037 (13)	-0.0041 (13)
C15	0.0308 (17)	0.0310 (16)	0.0293 (16)	-0.0039 (13)	0.0005 (14)	0.0018 (13)
C16	0.0207 (15)	0.0257 (15)	0.0352 (16)	0.0009 (12)	0.0047 (13)	0.0008 (13)
C17	0.0276 (16)	0.0188 (14)	0.0176 (14)	0.0042 (12)	0.0042 (12)	-0.0023 (11)
C18	0.0299 (17)	0.0207 (14)	0.0175 (14)	0.0030 (13)	0.0042 (12)	0.0014 (12)
C19	0.0289 (16)	0.0201 (14)	0.0200 (14)	0.0028 (13)	0.0040 (13)	0.0026 (11)
C20	0.0256 (16)	0.0204 (15)	0.0245 (15)	-0.0010 (12)	0.0083 (13)	-0.0031 (12)
C21	0.0199 (15)	0.0243 (15)	0.0243 (15)	0.0031 (12)	0.0026 (12)	-0.0041 (12)
C22	0.0275 (16)	0.0195 (14)	0.0167 (14)	0.0034 (12)	0.0045 (12)	-0.0047 (11)
C23	0.0387 (18)	0.0306 (16)	0.0242 (15)	-0.0017 (14)	-0.0066 (14)	0.0074 (13)
C24	0.0365 (18)	0.0321 (17)	0.0387 (17)	-0.0080 (14)	0.0045 (15)	0.0021 (14)
C25	0.0262 (16)	0.0302 (16)	0.0264 (15)	0.0024 (13)	-0.0014 (13)	-0.0006 (13)
Li1	0.026 (3)	0.025 (2)	0.025 (2)	-0.003 (2)	0.005 (2)	-0.0003 (19)
B1	0.0181 (17)	0.0217 (16)	0.0211 (17)	0.0092 (13)	0.0021 (14)	0.0010 (13)
N1	0.0270 (13)	0.0230 (12)	0.0208 (13)	0.0008 (10)	0.0007 (11)	-0.0012 (10)
01	0.0290 (11)	0.0235 (10)	0.0212 (11)	0.0030 (8)	0.0036 (9)	0.0023 (8)

Geometric parameters (Å, °)

C2—N1	1.342 (3)	C15—H15C	0.9800
C2—C3	1.393 (4)	C16—H16A	0.9800
C2—C7	1.497 (4)	C16—H16B	0.9800
C3—C4	1.383 (4)	C16—H16C	0.9800
С3—Н3	0.9500	C17—C22	1.414 (4)
C4—C5	1.377 (4)	C17—C18	1.419 (3)
C4—H4	0.9500	C17—B1	1.611 (4)
C5—C6	1.380 (4)	C18—C19	1.389 (3)
С5—Н5	0.9500	C18—C23	1.506 (4)
C6—N1	1.351 (3)	C19—C20	1.393 (4)
С6—Н6	0.9500	С19—Н19	0.9500
С7—Н7А	0.9800	C20—C21	1.392 (4)
С7—Н7В	0.9800	C20—C24	1.500 (4)
С7—Н7С	0.9800	C21—C22	1.386 (4)
C8—C9	1.405 (3)	C21—H21	0.9500
C8—C13	1.406 (3)	C22—C25	1.506 (3)
C8—B1	1.620 (4)	С23—Н23А	0.9800
C9—C10	1.398 (3)	С23—Н23В	0.9800
C9—C14	1.509 (4)	С23—Н23С	0.9800
C10—C11	1.390 (4)	C24—H24A	0.9800
С10—Н10	0.9500	C24—H24B	0.9800
C11—C12	1.386 (4)	C24—H24C	0.9800
C11—C15	1.507 (4)	C25—H25A	0.9800
C12—C13	1.403 (4)	С25—Н25В	0.9800
C12—H12	0.9500	C25—H25C	0.9800
C13—C16	1.517 (4)	Li1—O1	1.853 (5)
C14—H14A	0.9800	Li1—O1 ⁱ	1.873 (5)

C14—H14B	0.9800	Li1—N1	2.084 (5)
C14—H14C	0.9800	Li1—Li1 ⁱ	2.444 (8)
C15—H15A	0.9800	B1—O1	1.331 (3)
C15—H15B	0.9800	01—Li1 ⁱ	1.873 (5)
N1—C2—C3	121.8 (2)	C13—C16—H16C	109.5
N1—C2—C7	117.2 (2)	H16A—C16—H16C	109.5
C3—C2—C7	120.9 (3)	H16B—C16—H16C	109.5
C4—C3—C2	119.3 (3)	C22—C17—C18	117.3 (2)
С4—С3—Н3	120.4	C22—C17—B1	120.7 (2)
С2—С3—Н3	120.4	C18—C17—B1	121.9 (2)
C5—C4—C3	119.5 (2)	C19—C18—C17	120.2 (2)
C5—C4—H4	120.3	C19—C18—C23	117.9 (2)
C3—C4—H4	120.3	C17—C18—C23	122.0 (2)
C4—C5—C6	118.0 (3)	C18—C19—C20	122.6 (2)
С4—С5—Н5	121.0	C18—C19—H19	118.7
С6—С5—Н5	121.0	C20-C19-H19	118.7
N1—C6—C5	123.7 (3)	C21—C20—C19	116.8 (2)
N1—C6—H6	118.2	C21—C20—C24	121.6 (2)
С5—С6—Н6	118.2	C19—C20—C24	121.6 (2)
С2—С7—Н7А	109.5	C22—C21—C20	122.5 (2)
С2—С7—Н7В	109.5	C22—C21—H21	118.8
H7A—C7—H7B	109.5	C20—C21—H21	118.8
С2—С7—Н7С	109.5	C21—C22—C17	120.5 (2)
H7A—C7—H7C	109.5	C21—C22—C25	118.0 (2)
H7B—C7—H7C	109.5	C17—C22—C25	121.5 (2)
C9—C8—C13	117.9 (2)	C18—C23—H23A	109.5
C9—C8—B1	121.5 (2)	С18—С23—Н23В	109.5
C13—C8—B1	120.6 (2)	H23A—C23—H23B	109.5
C10—C9—C8	120.2 (2)	C18—C23—H23C	109.5
C10—C9—C14	117.6 (2)	H23A—C23—H23C	109.5
C8—C9—C14	122.2 (2)	H23B—C23—H23C	109.5
C11—C10—C9	122.0 (3)	C20—C24—H24A	109.5
C11-C10-H10	119.0	C20—C24—H24B	109.5
С9—С10—Н10	119.0	H24A—C24—H24B	109.5
C12—C11—C10	117.8 (2)	C20—C24—H24C	109.5
C12-C11-C15	121.8 (2)	H24A—C24—H24C	109.5
C10-C11-C15	120.3 (2)	H24B—C24—H24C	109.5
C11—C12—C13	121.4 (2)	С22—С25—Н25А	109.5
C11—C12—H12	119.3	С22—С25—Н25В	109.5
C13—C12—H12	119.3	H25A—C25—H25B	109.5
C12—C13—C8	120.7 (2)	С22—С25—Н25С	109.5
C12-C13-C16	117.8 (2)	H25A—C25—H25C	109.5
C8—C13—C16	121.5 (2)	H25B—C25—H25C	109.5
C9—C14—H14A	109.5	O1—Li1—O1 ⁱ	98.0 (2)
C9—C14—H14B	109.5	O1—Li1—N1	119.5 (2)
H14A—C14—H14B	109.5	O1 ⁱ —Li1—N1	138.6 (3)
C9—C14—H14C	109.5	O1—Li1—Li1 ⁱ	49.36 (16)

H14A—C14—H14C	109.5	Ol ⁱ —Li1—Li1 ⁱ	48.66 (16)
H14B—C14—H14C	109.5	N1—Li1—Li1 ⁱ	161.4 (3)
C11—C15—H15A	109.5	O1—B1—C17	121.9 (2)
C11—C15—H15B	109.5	O1—B1—C8	120.0 (2)
H15A—C15—H15B	109.5	C17—B1—C8	118.1 (2)
C11—C15—H15C	109.5	C2—N1—C6	117.7 (2)
H15A—C15—H15C	109.5	C2—N1—Li1	128.1 (2)
H15B—C15—H15C	109.5	C6—N1—Li1	114.2 (2)
C13—C16—H16A	109.5	B1—O1—Li1	138.3 (2)
C13—C16—H16B	109.5	B1—O1—Li1 ⁱ	137.6 (2)
H16A—C16—H16B	109.5	Li1—O1—Li1 ⁱ	82.0 (2)
N1—C2—C3—C4	0.4 (4)	C18—C17—C22—C21	3.3 (4)
C7—C2—C3—C4	-179.3 (2)	B1-C17-C22-C21	-174.9 (2)
C2—C3—C4—C5	0.7 (4)	C18—C17—C22—C25	-179.0 (2)
C3—C4—C5—C6	-0.7 (4)	B1—C17—C22—C25	2.8 (4)
C4—C5—C6—N1	-0.5 (4)	C22—C17—B1—O1	-50.9 (3)
C13—C8—C9—C10	1.2 (3)	C18—C17—B1—O1	131.0 (3)
B1—C8—C9—C10	179.0 (2)	C22—C17—B1—C8	128.9 (3)
C13—C8—C9—C14	-176.5 (2)	C18—C17—B1—C8	-49.2 (3)
B1—C8—C9—C14	1.4 (3)	C9—C8—B1—O1	125.9 (3)
C8—C9—C10—C11	-2.9 (4)	C13—C8—B1—O1	-56.3 (3)
C14—C9—C10—C11	174.9 (2)	C9—C8—B1—C17	-53.9 (3)
C9—C10—C11—C12	2.2 (4)	C13—C8—B1—C17	123.9 (3)
C9—C10—C11—C15	-176.8 (2)	C3—C2—N1—C6	-1.6 (3)
C10-C11-C12-C13	0.2 (4)	C7—C2—N1—C6	178.1 (2)
C15-C11-C12-C13	179.1 (2)	C3—C2—N1—Li1	176.2 (2)
C11—C12—C13—C8	-1.8 (4)	C7—C2—N1—Li1	-4.1 (3)
C11—C12—C13—C16	-179.2 (2)	C5—C6—N1—C2	1.7 (4)
C9—C8—C13—C12	1.1 (3)	C5—C6—N1—Li1	-176.4 (2)
B1—C8—C13—C12	-176.8 (2)	01—Li1—N1—C2	-159.0 (2)
C9—C8—C13—C16	178.4 (2)	O1 ⁱ —Li1—N1—C2	-7.0 (5)
B1—C8—C13—C16	0.5 (3)	Li1 ⁱ —Li1—N1—C2	-110.7 (10)
C22-C17-C18-C19	-1.2 (4)	O1—Li1—N1—C6	18.8 (3)
B1-C17-C18-C19	177.0 (2)	O1 ⁱ —Li1—N1—C6	170.8 (3)
C22—C17—C18—C23	179.1 (2)	Li1 ⁱ —Li1—N1—C6	67.1 (11)
B1-C17-C18-C23	-2.7 (4)	C17—B1—O1—Li1	-60.0 (4)
C17—C18—C19—C20	-2.1 (4)	C8—B1—O1—Li1	120.2 (3)
C23—C18—C19—C20	177.6 (2)	C17—B1—O1—Li1 ⁱ	143.1 (3)
C18—C19—C20—C21	3.3 (4)	C8—B1—O1—Li1 ⁱ	-36.6 (4)
C18—C19—C20—C24	-176.3 (2)	O1 ⁱ —Li1—O1—B1	-164.5 (3)
C19—C20—C21—C22	-1.1 (4)	N1—Li1—O1—B1	-2.8(5)
C24—C20—C21—C22	178.4 (2)	Li1 ⁱ —Li1—O1—B1	-164.5 (3)
C20-C21-C22-C17	-2.1 (4)	01 ⁱ —Li1—O1—Li1 ⁱ	0.0
C20—C21—C22—C25	-180.0 (2)	N1—Li1—O1—Li1 ⁱ	161.7 (4)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C5—H5···Cg1 ⁱⁱ	0.95	2.96	3.787 (3)	146
Symmetry codes: (ii) $x, y=1, z$.				

